
P. 47

P. 56

DREAMWEAVER
Still Snowing

FLASH
RIAs and Web Services

FREEHAND
The Flow Between Fireworks & FreeHand

DIRECTOR
Visual Debugging Tools for Shockwave

volume 3 issue 1 2005 www.mxdj.com

SHOCKWAVE3D: INTERACTIVE PROGRAMMING P. 32 3.1

THE LEADING MAGAZINE
FOR MACROMEDIA MX
DEVELOPERS & DESIGNERS

getting
started

captivatemacromedia

Getting Started with
Macromedia Captivate
Let us demonstrate for you!
by lisa heselton

January 2005

The Flow Between
Fireworks & FreeHand
A little patience yields a
lot of rewards
by ron rockwell

Visual Debugging Tools
for Shockwave
Making it easier to "see"
what's happening
by andy phelps

8 Introducing the
Macromedia
Knowledge Base
An exciting new
development
by deb dickerson

7 New Year,
New Look
What's coming from
MXDJ in 2005
by charles e. brown

20 More OOP in Flash
Taking the photo album to Flash, Part 2
by john c. bland

58 vanguard
Commanders of
Ingenuity
by mindflood

40

32

26

1 • 20054 • MXDJ.COM

10 Still Snowing
Upgrading your snowman
by jim babbage

14 RIAs and Web Services
An important role in Flash
by art phillips

57 Introducing
the “Making
Blackstone”
Article Series
Blackstone
heralds a new
dawn for
Macromedia
ColdFusion
by damon cooper
& tim buntel

t is the New Year, a time when

we make resolutions and change

(alright, I promise I won't talk about

diets). It is also a time when we look

back on the previous year. Publishing this

journal is certainly no different.

 It is hard to believe that my first quar-

ter as editor-in-chief is now completed.

I was overwhelmed by the number of

very positive emails I received when the

September issue came out. Most were in

agreement about Flash being the tech-

nology of the future. However, with that

agreement came many questions. We will

be treating those many questions this

year.

 In the plans are four themed issues,

one for each quarter, that will address

many of the questions that were asked.

Here is what I am projecting:

 I received many letters asking how

the pieces fit together. So the first theme

issue, in March, will deal with coordinat-

ing the various Macromedia MX com-

ponents. We will address issues such as

how Fireworks works with Flash, using

Dreamweaver with Contribute, Flash, and

Captivate, etc.

 The second theme, in June, will

address an important new topic: the

third-party market that has grown

around MX products. We have started to

devote more space to product reviews.

This issue will examine how to incorpo-

rate these products into the workflow.

 Next, we’ll talk about training and

education. We will examine the options

for receiving and delivering the skills

necessary in this profession. We will also

examine the Macromedia certification

process.

 Finally, our year-end issue will offer

greater coverage of the annual MAX con-

ference. This symposium sets the theme

and direction of this industry for the

following year. The information coming

from it is always exciting.

 Another feature that will be appear-

ing in 2005 will be case studies. Currently,

I am talking to the developers and

designers of several major Web sites and

they have agreed to write about their

experiences in this journal. Unfortunately,

I cannot get into specific details now, but

trust me, they will be exciting. Expect

a wealth of information to come from

these articles.

 Increasingly, as topics become more

complex and feature rich, we are finding it

difficult to contain all the necessary infor-

mation in a single article. We will be seeing

an increase in multipart articles. This trend

began with Art Phillips and his series on

RAD. I am continuing it with an ongoing,

and open-ended, series on AS 2.0.

 Since I took over in September, I

have had a tough time fitting many

articles into nice, neat little categories.

For instance, should an article about

using Dreamweaver with ColdFusion be

classified as a Dreamweaver article or

a ColdFusion article? What about Flash

Video? Is that a Flash article or should

it have its own classification? In light

of that, we will discontinue the strict

categories in this journal. I think this will

give us a more fluid and flexible format

to work with. Of course, I will be anxious

to hear your feedback regarding this

change.

 I am also planning to promote

greater interaction between the printed

magazine and the Web site. It is tough to

talk about multimedia and not be able

to show it. It is my hop e that we will

have downloadable files to work through

some of the tutorials and examples.

 Like a Web site, this magazine is

a developing work in progress. Next

January it will be interesting to see how

all of these plans went and where the

roads led us.

 In conclusion, I want to take this oppor-

tunity to thank everyone for your support

and to wish you every success and happi-

ness for the new year of 2005.

Group Publisher Jeremy Geelan
Art Director Louis F. Cuffari

EDITORIAL BOARD
Editor-in-Chief
Charles E. Brown charles@sys-con.com
Dreamweaver Editor
Dave McFarland
Flash Editor
Brian Eubanks
Fireworks Editor
Joyce J. Evans
FreeHand Editor
Ron Rockwell
Louis F. Cuffari
Director Editor
Andrew Phelps
Captivate Editor
Tom Green

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway,
David Hurrows UK, Joshua Davis USA,
Jon Gay USA, Craig Goodman USA,
Phillip Kerman USA, Danny Mavromatis USA,
Colin Moock Canada, Jesse Nieminen USA,
Gary Rosenzweig USA, John Tidwell USA

EDITORIAL
Executive Editor
Gail Schultz, 201 802-3043
gail@sys-con.com

Editors
Jamie Matusow, 201 802-3042
jamie@sys-con.com
Nancy Valentine, 201 802-3044
nancy@sys-con.com

Assistant Editors
Natalie Charters, 201 802-3041
natalie@sys-con.com
Seta Papezian, 201 802-3052
seta@sys-con.com

Technical Editors
Jesse Warden • Sarge Sargent

To submit a proposal for an article, go to http://
grids.sys-con.com/proposal.

Subscriptions
E-mail: subscribe@sys-con.com
U.S. Toll Free: 888 303-5282
International: 201 802-3012
Fax: 201 782-9600
Cover Price U.S. $5.99
U.S. $29.99 (12 issues/1 year)
Canada/Mexico: $49.99/year
International: $59.99/year
Credit Card, U.S. Banks or Money Orders
Back Issues: $12/each

Editorial and Advertising Offices
Postmaster: Send all address changes to:
SYS-CON Media
135 Chestnut Ridge Rd.
Montvale, NJ 07645

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com,
Frank Cipolla: 845 731-3832, frank.
cipolla@epostdirect.com

Promotional Reprints
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com

Copyright © 2005
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by
any means, electronic or mechanical, includ-
ing photocopy or any information storage and
retrieval system, without written permission.

MX Developer’s Journal (ISSN#1546-2242)
is published monthly (12 times a year) by
SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645.

SYS-CON Media and SYS-CON Publications,
Inc., reserve the right to revise, republish, and
authorize its readers to use the articles submit-
ted for publication. MX and MX-based marks
are trademarks or registered trademarks of
Macromedia, in the United States and other
countries. SYS-CON Publications, Inc., is inde-
pendent of Macromedia. All brand and product
names used on these pages are trade names,
service marks or trademarks of their respective
companies.

fro
m

 th
e

 e
d

ito
r

i

What’s coming from MXDJ in 2005
by charles e. brown

New Year, New Look

Charles E. Brown is the

editor-in-chief of MX

Developer’s Journal. He is

the coauthor of Fireworks

MX, Zero to Hero and

the auther of Beginning

Dreamweaver MX. He

also contributed to The

Macromedia Studio MX

Bible. Charles is a senior

trainer for FMC on the MX

product family.

1 • 2005 MXDJ.COM • 7

se
a

rc
h

SYS-CON MEDIA
President & CEO
Fuat Kircaali, 201 802-3001
fuat@sys-con.com
Vice President, Business Development
Grisha Davida, 201 802-3004
grisha@sys-con.com
Group Publisher
Jeremy Geelan, 201 802-3040
jeremy@sys-con.com

ADVERTISING
Senior Vice President, Sales & Marketing
Carmen Gonzalez, 201 802-3021
carmen@sys-con.com
Vice President, Sales & Marketing
Miles Silverman , 201 802-3029
miles@sys-con.com
Advertising Sales Director
Robyn Forma, 201 802-3022
robyn@sys-con.com
Advertising Sales & Marketing Manager
Dennis Leavey, 201 802-3023
dennis@sys-con.com
Advertising Sales Manager
Megan Mussa, 201 802-3023
megan@sys-con.com
Associate Sales Managers
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com
Dorothy Gil, 201 802-3024
dorothy@sys-con.com
Kim Hughes, 201 802-3025
kim@sys-con.com

PRODUCTION
Production Consultant
Jim Morgan, 201 802-3033
jim@sys-con.com
Lead Designer
Louis F. Cuffari, 201 802-3035
louis@sys-con.com
Art Director
Alex Botero, 201 802-3031
alex@sys-con.com
Associate Art Director
Richard Silverberg, 201 802-3036
richards@sys-con.com
Assistant Art Directors
Tami Beatty, 201 802-3038
tami@sys-con.com
Andrea Boden, 201 802-3034
andrea@sys-con.com

SYS-CON.COM
Consultant, Information Systems
Robert Diamond, 201 802-3051
robert@sys-con.com
Web Designers
Stephen Kilmurray, 201 802-3053
stephen@sys-con.com
Matthew Pollotta, 201 802-3054
matthew@sys-con.com
Online Editor
Martin Wezdecki 201 802-3045
martin@sys-con.com

ACCOUNTING-
Financial Analyst
Joan LaRose, 201 802-3081
joan@sys-con.com
Accounts Payable
Betty White, 201 802-3002
betty@sys-con.com
Accounts Recievable
Stephen Michelin, 201 802-3062
smichelin@sys-con.com

EVENTS
President, SYS-CON Events
Grisha Davida, 201 802-3004
grisha@sys-con.com
National Sales Manager
Jim Hanchrow, 201 802-3066
jimh@sys-con.com

CUSTOMER RELATIONS
Circulation Service Coordinators
Edna Earle Russell, 201 802-3081
edna@sys-con.com
Linda Lipton, 201 802-3012
linda@sys-con.com
Monique Floyd, 201 802-3082
monique@sys-con.com
JDJ Store Manager
Brundila Staropoli, 201 802-3000
bruni@sys-con.com

1 • 2005

’ve been looking for that!”

 “How did it know what I was look-

ing for?”

 If you’ve made any of these comments

recently, then you’ve probably been

using the Knowledge Base, a self-service

guided search tool that allows you to

access precise technical information on

Macromedia products.

 The Knowledge Base has an intuitive

guided search tool that allows you to

fine-tune your queries based on estab-

lished categories and "best bet" choices.

This tool is free for all macromedia.com

visitors.

Guided Search
 Let’s face it – in most cases, you'll find

one of two scenarios when searching

for information: too many results, or not

enough. The new guided search aims

to eliminate that problem. Once you’ve

entered your initial query, the search tool

provides you with various areas to fur-

ther focus or expand your results:

• Relevant search topics: When

Macromedia publishes a new docu-

ment, the Knowledge Base analyzes

the content and maps it to appropriate

categories: Activity, Symptom, Product

Versions, or Environment. You can

focus your search within any of these

topics to filter your search results.

• Search within a search: If you feel

the list of documents is still too large,

you can further restrict your results

by typing additional search terms in

the “Search within your results” field.

Rather than searching through the

entire Knowledge Base again, this

action searches within the documents

already returned in the previous

search.

• Best bets: In some cases, you will also

notice a section labeled “Best Bets.”

You will see this option when we think

a particular link may be useful for

you, based on the search terms you

entered.

• Advanced options: Using the Advanced

Search option, you can also filter your

search based on criteria not previously

available.

I Say ColdFusion,
You Say CF
 In an environment where acronyms

rule, everyone has their own way of

referring to something. In the past, this

would have been a problem. Now, with

an extensive dictionary of technical

terms available, it’s no longer an issue.

The Knowledge Base is aware of the

variations of those technical terms and

will find the content you’re searching

for. Each search a customer performs

automatically provides structured feed-

back on the technical quality of the

Knowledge Base to Macromedia, which

allows us to continually add new techni-

cal information to make the Knowledge

Base more effective.

Yes, You Can Teach an Old
Dog New Tricks
 The Knowledge Base content cur-

rently includes technical information

(TechNotes), Macromedia Developer

Center articles, and Macromedia cus-

tomer service notes on policies and

procedures (service notes). Again,

because each search of the Knowledge

Base provides information regarding suc-

cess or failure of the results, we can be

smarter about providing the information

you need, so you can succeed in using

our products. The information gathered

also provides us with valuable insight to

fill content gaps, improve relevance, and

increase the effectiveness of the system.

 If you’ve used the new Knowledge

Base, we’d love to hear your feedback

(www.macromedia.com/bin/kb_feed

back.cgi). If you haven’t, we’ve provided

a FAQ (www.macromedia.com/support/

knowledgebase) with additional informa-

tion and a short demonstration of how to

use the guided search, as well as general

search tips (www.macromedia.com/sup-

port/knowledgebase/searchtips).

An exciting new development
by deb dickerson

Introducing the Macromedia
Knowledge Base

Debbie Dickerson is

a Knowledge Base

Program Manager

and has been working

at Macromedia since

1999.

ddickerson

@macromedia.com

i"

8 • MXDJ.COM

n “Let It Snow, Man” (MXDJ Vol. 2,

issue 12), I used Fireworks to create

all the essential ingredients for our

frozen friend. We then exported the

pieces using Export as CSS Layers. This

gave us a starting HTML page (generated

by Fireworks) and all of our graphics in

absolutely positioned DW layers (DIVs).

 In this article we will work in

Dreamweaver and use the Drag Layer

behavior to create a Web page where

you can move all the snowman pieces

together and build your own snowman

online. The Drag Layer behavior uses

Dynamic HTML (DHTML) to make your

page interactive.

 This concept could be applied to

many different uses: visual quizzing, jig-

saw puzzles, and other holidays, just to

name a few.

Layers Can Be Such a Drag
. . . or Not
 We have a certain amount of prep

work to do here before we create our

draggable layers. To begin with, due to

old coding there are some issues with the

Drag Layer behavior in itself, as pointed

out by CMX’s Danilo Celic in one of his

CMXtraneous Blogs, Dreamweaver Drag

Layer behavior broken in Mozilla with

valid doctype. In a nutshell, the Drag

Layer behavior doesn’t work in standards-

compliant Mozilla browsers. With a big

thank you to Danilo, here’s what you

need to do in order to fix the problem.

 You need to locate the Drag Layer

JavaScript file ({dw install folder}/

Configuration/Behaviors/Actions/Drag

Layer.js). On my Windows XP Pro sys-

tem, this is found in: C:/Program Files/

Macromedia/Dreamweaver MX 2004/

Configuration/Behaviors/Actions/Drag

Layer.js. If you’re not on Windows XP

Pro, Danilo has also kindly blogged the

Dreamweaver Configuration files loca-

tions.

1. In Drag layer.js go to line 161 and

change it from:

 else if (NS6){style.left = new-

Left; style.top = newTop;}

 to:

 else if (NS6){style.

left = newLeft+'px'; style.top =

newTop+'px';}

2. Then go down to line 174 and change

it from:

 else if (NS6) {style.left =

MM_targL; style.top = MM_targT;}

 to:

 else if (NS6) {style.left

= MM_targL+'px'; style.top = MM_

targT+'px';}

 The first change allows the speci-

fied layer to be dragged, and the

layers

Still Snowing

Upgrading your snowman
by jim babbage

i

fi
g

u
re

 1

fi
g

u
re

 2
fi

g
u

re
 3

10 • MXDJ.COM 1 • 2005

second change allows the layer to

snap to a location when dropped if

that option is selected within the Drag

Layer behavior dialog. Notice that in

both cases all we added was the unit

of measure (px) to the values being

assigned.

3. Close and restart Dreamweaver and it

should happily add in the correct code

to run in valid pages for Mozilla.

 With that little task out of the way,

let’s do a little under-the-hood work on

the HTML page created by Fireworks.

 Please note that even with these

changes, the Drag Layer behavior does

not function in the Safari browser.

Turning a Fireworks HTML
Page into an XHTML-
Compliant Page
 While Fireworks can generate HTML,

it doesn’t do the best job in the world.

First, the page doesn’t have a doctype.

Also, Fireworks will generate img name

attributes for all our graphics based on

the name of each layer. The img name=""

attribute causes Internet Explorer a bit of

grief, and as a result the page won’t work

as we want it to. Rather than start from

scratch, we can touch up the Fireworks-

created Web page and make it suitable

for our needs.

 Note: Due to a bug in Internet

Explorer 6 the name attribute causes the

layers not to be draggable, even though

they are in some other browsers. By

replacing the name attribute with the alt

attribute, you eliminate this problem and

make your page more accessible.

 Before we go any further we will do

a Find and Replace for this attribute, and

change it from name to alt. XHTML com-

pliancy requires that all images have an

alt attribute, even if it is left blank.

 If you wish, you can edit the alt attri-

butes later, giving each graphic a better

description. However, for the purposes of

this page – which is really a visual experi-

ence – I think the basic alt text will suffice.

1. In Dreamweaver, go to Edit>Find and

Replace. Use these settings.

• FIND IN combo box: Current docu-

ment

• SEARCH combo box: Source code

• FIND text box: img name=

• REPLACE text box: img alt=

 Figure 1 shows the indicated settings.

2. Choose Replace All and DW will cycle

through your HTML code, making the

changes for you. This is a whole lot

easier than searching on your own!

3. With basic alt tags set, let’s now con-

vert this page to an XHTML-compliant

page. Dreamweaver makes this step

quite easy too.

4. Switch to Code View for a moment

to see what happens when you do

the next couple of steps. Look at

the beginning of the code. It should

resemble what you see in Listing 1,

line spaces and all.

5. Notice that there is no doctype. Go to

File > Convert > XHTML. Look at the

code again. Line 1 of the code now

begins with a transitional doctype:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD

XHTML 1.0 Transitional//EN" "http://

www.w3.org/TR/xHTML1/DTD/xHTML1-tran-

sitional.dtd">

<HTML xmlns="http://www.w3.org/1999/

xHTML">

6. Our last step is to remove the line

spacing in the <head> area. Go

to COMMANDS > APPLY SOURCE

FORMATTING. The blank lines in your

code disappear.

7. Save your page.

Tweaking the Page
 You may recall that in my previous

article I had you export a JPG slice for our

gradient background. If you look at the

current page in Dreamweaver, you will

notice that the slice is not currently being

used. Our snowman sits in a winter won-

derland of whiteness. Let’s use that back-

ground slice. We can do this in a couple

of ways:

• We can create a new DW layer (AP div),

set the Z-index so the new layer is at

the bottom, and then apply the back-

ground slice as a repeating image.

• We can set the background image for

the page to use this slice.

 The main difference between these

two choices is that the first option would

contain the background within the div/

layer. The second option would fill the

entire page, and continue to repeat both

vertically and horizontally unless we use

CSS to limit the repetition.

 I also envision this background to be

the frame for our winter picture, so in

my case I will use the background slice

within a newly created layer.

1. Select the Layout tab from the Insert

Bar (see Figure 2).

2. Choose the Draw Layer icon.

3. Move your cursor onto the page, then

click and drag to drag an empty layer.

Don’t worry about size or position.

4. When you have drawn the layer,

click on its border to select it. The

Properties Inspector will display attri-

butes for the layer.

5. Set the T and L values to 0.

6. Set the W value to 760px.

7. Set the H value to 420px.

8. Set the Layer ID to bkg.

9. Browse for the bkg.jpg image slice

we created in Part 1. Figure 3 shows

the setting I have in my Properties

Inspector.

10. Go to the Layers Panel in DW. If it is

not visible, go to Window > Layers

(F2). Note that our new layer is at the

top of the Z-index, obscuring all of

our other snowman pieces.

11. Click on the bkg layer and drag it all

the way down to the bottom of the

Layer Panel. Now when the layer is

figure 4

"The Drag Layer behavior uses
Dynamic HTML (DHTML) to
make your page interactive"

1 • 2005 MXDJ.COM • 11

li
st

in
g

 1

deselected our snowman will appear

on top of the background.

Snowman Goes to Pieces
– Full Story at 11
 With our background layer in place,

it’s time to take Frosty apart. One of the

reasons I wanted to use the FW-gener-

ated HTML page is that it gives us the

final position of each snowman piece and

has all the layers in place with the right

Z-index. We could have done all this from

scratch – creating all the necessary layers

(as we did with the background layer)

– but why make all that extra work for

ourselves when we don't have to?

 What we will do next is set the Drag

Layer behavior for each layer, and then

move the pieces underneath or to the

right of the background.

1. To start, select the body tag from

the Tag Selector. You must apply this

behavior to the body tag, rather than

to the individual layers (see Figure 4).

2. Go to the Behaviors panel (see Figure

5) and click on the Add Behavior icon.

3. Choose the (yes, you guessed it) Drag

Layer behavior.

 If the Drag Layer behavior is greyed

out, you will need to choose the Show

Events for menu item, and choose IE

6.0. This will make the drag behavior

accessible.

4. When the dialog box opens, select the

hat layer from the Layer dropdown

menu.

5. Click the Get Current Position button

to have DW apply the hat’s x and y

coordinates.

6. Optional: Set a value of 20 pixels for

the Snap within the option if you want

the snowman pieces to snap into place

when they get near your original loca-

tion (see Figure 6).

7. Click on the Advanced tab.

8. For the While Dragging option, make

sure the Bring Layer to Front box is

checked and then choose Restore Z-

index from the combo box.

9. Click OK (see Figure 7).

 I recommend that you not set the

Restore Z-index option for the eyes. They

are rather hard to reselect once they’ve

been placed because the hat and nose

layers overlap them somewhat.

 You can add your own custom

JavaScript message boxes to encourage

your users as they move each piece into

place.

10. Select the hat layer and drag it off

to the right of or underneath your

background layer.

11. Select the body tag again and repeat

the above procedure. You will need

to do this for each layer that you

want to make draggable.

 You don't have to reposition the

layer right after adding each iteration

of the behavior. Go ahead and add all

the Drag Layer behaviors, then jumble

up the pieces of your snowman after-

wards.

Jim Babbage (contributing from

CommunityMX) comes from the photo-

graphic world and has spent many years

as a professional studio photographer.

His involvement with the Web began

in the mid ’90s when the company he

worked for had just gotten online. Born

and raised in Toronto, Jim teaches imag-

ing, Web design, and photography at

Centennial College's Centre for Creative

Communications (www.thecentre.cen-

tennialcollege.ca). He is a partner in

Newmedia Services (www.nms123.ca), a

small communications company special-

izing in the things he teaches. He is a

regular contributing partner to Community

MX (www.communitymx.com) where

he’s written many articles and tutorials

for Fireworks, Dreamweaver, and other

fi
g

u
re

 5
fi

g
u

re
 6

fi
g

u
re

 7

<HTML>

<head>

<title>snowman2</title>

<meta http-equiv="Content-Type" content="text/HTML;iso-8859-1">

<meta name="description" content="FW MX CSS Layer">

</head>

12 • MXDJ.COM 1 • 2005

his month the topic is Web ser-

vices. Previous articles looked

at the RIA, component-based

development, XML, and the role of

ColdFusion as a data source. In this issue

we examine the role of Web services in

RIA development.

 What is a Web service? Two years

ago I really didn’t have a clue. Sure, I had

heard some of the buzzwords such as

SOAP and WSDL, but back then I couldn’t

have told you what they meant. Then

Macromedia asked me to speak at their

developer’s conference: MAX. Knowing of

my passion for Flash and data integration

they offered me a great topic: Flash and

Web services. It was a wonderful oppor-

tunity and a great eye-opener for me.

Just what is a Web service? Let’s break it

down. Web. Service.

 The Web refers to an immense infor-

mation space and network that enables

unprecedented access to resources. A

Web resource is some type of electronic

construct, such as a file, network, proces-

sor, application, or service. Every Web

resource is identified by its URI and

accessed via Web protocols.

 A service is a resource that exposes

its functionality through a programmatic

(rather than a graphical) interface. The

method of calling the service, and the

possible results of that call, are exposed

via documentation (the schema).

Developers only need to concern them-

selves with this programmatic interface.

 A Web service, therefore, is a resource

that is identified by a URI and accessed

by applications using standard Web

protocols in accordance with the schema

that describes its programmatic interface.

 Applications can be assembled from

these services.

 The service provides an interface that

can be called by another program. This

interface acts as an adaptor between

the Web and the actual application logic

that implements the service. The pro-

grammatic interface provides a layer of

abstraction that makes the connections

flexible and adaptable. This application-

to-application programming interface

can be invoked from any type of applica-

tion client or service

What Role Do These
Web Services Play in RIA
Development?
 Web services provide a standard-

ized method of passing commands and

complex data between the client and the

server.

 Macromedia recognized the power of

this technology and expressed a serious

commitment to it with the MX product

line.

 Jeremy Allaire succinctly stated

Macromedia’s position: “The conver-

gence of rich clients, Web services

and the need for a more scalable Web

application development and deploy-

ment model have driven Macromedia to

deliver components and Web services

as part of Macromedia MX. ...empower-

ing a wide range of developers to access

the power of object-based component

development, rich client/server models

and Web services without the pain of

complex frameworks. The Macromedia

MX product family combines ColdFusion

Components with the rich client capabili-

ties of the Macromedia Flash Player, the

development capabilities of Macromedia

Dreamweaver MX, and the openness and

interoperability of SOAP and XML Web

services.”

 This series of articles has explored

that vision. We have seen how Flash’s

data and UI components provide for

rapid visual development. In the last

issue we saw how ColdFusion provides an

extremely simple method of creating a

rich data source. User-Defined Functions

(UDFs) in a ColdFusion Component (CFC)

can make data sources for both Web ser-

vices and Flash Remoting technologies.

web services

RIAs and Web Services

An important role in Flash
by art phillips

t

fi
g

u
re

 1
fi

g
u

re
 2

14 • MXDJ.COM 1 • 2005

 The standardization that a Web ser-

vice brings to distributed computing is

based on its use of standard Web proto-

cols. The most notable

are HTTP and XML.

Domain Name Service

(DNS) technologies

also have a role.

 So, how do we

use all this in Flash?

 The first thing

we need is the Web

service’s WSDL file.

WSDL stands for Web

Service Description

Language. It is one

of the flavors of XML

that Web services use.

 Please be very

clear on one thing;

the WSDL file is not

the Web service. The

WSDL file is a descrip-

tion of the Web

service. Think of the

WSDL file as the metadata for the service.

It describes what the service does, how

it communicates, and the actual Web

address of the service.

 The WSDL file describes the service’s

programmatic interface. It is a contract. It

promises us that if we do this, we will get

back that.

 The good news is that we should

never have to either read or write a

WSDL file our selves. The WSDL file

should be automatically generated by

the technology in which we created the

service. When we need to use a Web ser-

vice, the technology we are using should

be able to read the WSDL and help us

consume the service.

 Flash, Dreamweaver, and ColdFusion

all provide that level of support.

 In ColdFusion the WSDL is generated

when we append ?wsdl to the end of

our ColdFusion Component’s address. If

our component’s address is www.mydo-

main.com/mycomponent, the address

for the WSDL is www.mydomain.com/

mycomponent?wsdl.

 From this WSDL a proxy object can

be created. The proxy object is an object

we instantiate on our server, or for our

purposes, in the Flash client, that has all

of the methods and properties of the

service described by the WSDL. We can

then use all of the functionality of the

remote service right on our local proxy.

Commands and data are passed between

our proxy and the actual service using

another flavor of XML; SOAP.

 SOAP (the Simple Object Access

fi
g

u
re

 3

fi
g

u
re

 4

fi
g

u
re

 5

“The convergence of rich clients, Web services,
and the need for a more scalable Web

application development and deployment model
have driven Macromedia to deliver components
and Web services as part of Macromedia MX.”

–jeremy allaire, april 2002

1 • 2005 MXDJ.COM • 15

Protocol) is the XML schema that pro-

vides a standardized way of exchanging

data and commands between a Web ser-

vice and a Web service consumer. SOAP

is independent of the platform, object

model, and programming language used.

 This standardization provides for

great flexibility. Any client on any plat-

form can communicate with any service

on any platform. Such exchanges are said

to be “loosely coupled.”

 This broad flexibility means that the

exchange may be slightly lacking in effi-

ciency. If we were dealing with a specific

service and a specific client we could format

the exchange in the most efficient manner

without regard for other clients and services.

This is what Flash Remoting does.

 Flash Remoting requires a Flash

Remoting–enabled server and the Flash

client. The exchange between the ser-

vice and the client is accomplished by

exchanging binary data in the Action

Message Format (AMF). This binary is

leaner and more efficient than the text-

based marKup of the SOAP XML. Flash

Remoting represents the most efficient

way of exchanging commands and data

with a service. Flash Remoting will be the

subject of the next article in this series.

 Let’s look back briefly at last month’s

article on ColdFusion as a data source.

We saw that by simply setting the access

attribute of a user-defined function to

remote we could create a ColdFusion

data source that functioned both as a

Web service and a Flash Remoting data

source.

 This flexibility allows users in other

frameworks (ASP.net, Java, PHP) to

consume our ColdFusion data source

as a Web service using WSDL and SOAP

XML. The same data source can then

be used by Flash clients as a Flash

Remoting data source using the more

efficient AMF binary. Macromedia has

provided for efficiency within their

products without excluding other tech-

nologies.

 We have discussed the role of XML

in Web services, but earlier I mentioned

that Web services also use domain name

service (DNS) technology. Part of the

bigger picture of Web services is the

idea of directories where we can browse

for services to assemble applications

from. These directories are called UDDIs

(Universal Description, Discovery and

Integration) and they are where Web ser-

vices use DNS technologies.

 While an optional part of the Web

services framework, UDDIs present a very

interesting development model.

Developers will search these directories

by functionality, or by industry, to find

services to build applications from.

Inventories, pricing, shipping informa-

tion, and other business information will

be able to be found in UDDIs.

 UDDIs can be public or private. There

are several public UDDIs, including those

at IBM and Microsoft. One that has been

very popular with the Macromedia com-

munity is XMethods (www.XMethods

.com). The famous and popular Babel Fish

service was once available there.

fi
g

u
re

 7

fi
g

u
re

 6

16 • MXDJ.COM 1 • 2005

 XMethods provides a listing of Web

services as well as a list of clients using

the services. In addition, through a part-

nership with Mindreef, Inc., XMethods

provides a means of testing the service

and seeing the underlying exchange of

SOAP.

 XMethods’ home page lists the most

recent additions to the directory. At the

bottom of the home page there is a list

of XMethods demo services. While you

are on XMethods’ site don’t overlook the

links for the full list of all the Web services

listed at XMethods.

 Our application will use a simple ser-

vice from the XMethods demo services

at the bottom of the home page. The

Weather – Temperature service will give

users the temperature when a ZIP code is

submitted.

 At the bottom of XMethods’ home

page, in the Demo Services section,

find and follow the link for Weather

– Temperature (see Figure 1). This will

lead us to a page with information and

links related to the service. Take a minute

and look at the information on the page;

the only thing we will need to use this

simple service for is the address for the

WSDL (see Figure 2). If we follow the link

near the top of the page we can see what

the WSDL for this service looks like. Note:

This illo is very optional (see Figure 3). If

we copy the address from the address

bar we are ready to open Flash and build

our Web service consumer.

 Create a new Flash document. Add

a new WebServiceConnector from the

Components panel (see Figure 4). Like

the other connectors, this component

does not have a visual presence in the

final SWF. It is often placed off stage, out

of the way of visual elements. Give it an

instance name of cxn.

 Open the Component Inspector and

go to the Parameters tab. Paste the WSDL

into the WSDLURL field. Flash will go out,

get the WSDL, analyze it, and use the

WSDL information to assist us in creating

our application. After a few seconds we

can click the operation field underneath

the WSDLURL field. This will show us all

of the functions that we can run from

the service. The Weather – Temperature

service has one operation, getTemp. We’ll

leave the other settings at their defaults.

The finished Parameters settings will look

like Figure 5.

 With the connection configured, we

can build the user interface for the appli-

cation. We’ll add two text inputs from

the UI Components to the stage, one

above the other. We’ll give the top one an

instance name of zipcode and the bot-

tom one temperature. In between them,

we’ll place a Button component. The

Button does not need an instance name,

as we will apply our actions directly to it.

The finished set up will look like Figure 6.

 With our components in place, we are

ready to bind them together. We’ll start

by binding the user input (zipcode) to

the service.

 Select the WebServiceConnector on

fi
g

u
re

 8

fi
g

u
re

 9

18 • MXDJ.COM 1 • 2005

stage. In the Component Inspector panel

move to the Bindings tab. Click the plus

sign to add a new binding and select

zipcode from the params (see Figure 7).

Back in the Component Inspector, move

down to the bound to field and choose

TextInput, <zipcode> from the Bound To

window. The finished binding will look

like Figure 8.

 Now, we’ll bind the results

to the interface. Keeping the

WebServiceConnector selected and stay-

ing in the Bindings tab, click the plus

sign to add the final binding. In the Add

Binding window, select results (see Figure

9). Again, move down to the Bound To

field. Open the Bound To window and

select TextInput, <temperature>. The

final binding will look like Figure 10.

 All that remains is to program our

button to trigger the call to the service.

We will do this by adding a behavior

directly to the button. Start by select-

ing the button on the stage. Open the

Behavior panel and click the plus sign to

start adding the behavior to our button.

Choose Data > Trigger Data Source (see

Figure 11).

 From the Trigger Data Source

window, be sure to select the

WebServiceConnector; cxn. The applied

behavior will look like Figure 12.

 Test your movie. When the SWF opens

you should be able to enter a valid ZIP

code, click the button, and receive the

temperature for that area.

 One important thing to note: this

application will work fine from the SWF

player. It will not work if we put it on

our server. Web services use XML in the

exchanges of commands and data. When

running from a Web server, Flash’s XML

class does not allow data to be loaded

from other domains without a permis-

sions file on that server. This will be

examined with other security issues in a

future article.

Summary
 Remember that you can use last

month’s article to create your own Web

service data source. Then your data

source and Flash application can come

from the same domain and there will be

no security issues to prevent the loading

of data.

 Have some fun and play around

with some of the other Web services at

XMethods. Remember that some services

may return objects to us that we cannot

use. Any service that returns a string or

number is a safe bet.

 That’s it for this month. Drop back next

month as we examine and build an appli-

cation based on Flash Remoting.

fi
g

u
re

 1
0

fi
g

u
re

 1
1

fi
g

u
re

 1
2

Arthur Phillips has been delivering cutting-edge training solutions since

1984 and has developed instructional materials for George Washington

University, the Federal Reserve Board, the U.S. Graduate School, and

many others. Art has an extensive background in video, multimedia,

electronic graphics, Web development, and e-Learning. He holds

too many certifications as a Macromedia Instructor, Designer, and

Developer to list. His Web site (www.artswebsite.com) is a well-known

resource in the Macromedia community. art@artswebsite.com

1 • 2005 MXDJ.COM • 19

opefully you read last

month’s issue (MXDJ, Vol. 2,

issue 12). This is a continua-

tion of that article, so please

have it handy for reference purposes. As a

small review, currently we have our back

end coded and the design implemented.

It is time for some real work now.

Real Work
 What is real work? For the purpose

of this article it is Actionscript class

development, not to knock designers or

design work. Before I start a class I always

create my directory structure. Figure 1

shows my common directory structure.

Everything is the same as in the October

issue except we have a Flash directory

and we are missing two directories. Let’s

explore the flash/source directory.

 The flash/source folder is strictly for

my Flash source files. I will typically cloak

them in Dreamweaver so they don’t

upload every time I decide to publish the

entire site. The main thing to notice is

where the app.fla file resides in reference

to the classes folder. This is key for class

development as you must specify the

exact location in dot syntax. The classes

folder also has a subfolder called subs,

where I store all subclasses. Sometimes

I’ll even have subfolders here depending

on the application/class needs. Okay.

Now we can start developing. I’m going

to walk you through the exact steps I

took to develop this application.

Data.as Class
 This class handles the data retrieval. I

started here because without data noth-

ing will work. The first step was to import

the necessary classes.

import mx.remoting.NetServices;

import mx.remoting.debug.NetDebug;

import mx.events.EventDispatcher;

 These are the basic imports for

Remoting (NetServices and NetDebug) as

well as the EventDispatcher class. While

developing the app I thought about a

recent project I did for a company and

how I could have improved it. Well, using

the EventDispatcher would have been

one way so I figured I’d use it here (see

Listing 1). I’ll go into a little more detail

later.

 The next task is to create the class

variables and code the constructor func-

tion. I always put my variable declara-

tions at the top of my class block with my

class constructor, if I use one, right after

my variable declarations; structurally it

is better for me. Here the constructor,

Data(), merely calls the init() function, my

typical constructor setup.

 Our init() function, by line, initial-

izes Remoting debugging (you can

now use the NetConnection Debugger

to monitor your Remoting calls), the

EventDispatcher, and stores a reference

to the data.cfc component in the data_

cfc variable created earlier. I don’t want

to spend a lot of time on Flash Remoting

since that is not the core topic here, but I

will touch on a few things.

 What we are doing is creating

a gateway connection to the string

stored in the remotingURL variable by

using NetServices.createGatewayCon

nection(remotingURL). On top of that

we use the getService(serviceAddress,

[default responder]) function from the

NetServices class, which “Creates a Flash

Remoting NetServiceProxy object that

allows access to application server func-

tions” (Flash Help Docs). The serviceAd-

dress parameter is the location of the

CFC, after the remotingURL, using dot

syntax. So, the remotingURL points to the

server www.jdevinc.com. The dot syntax

to the component is projects.flashgallery.

assets.cfcs.data. The full URL to the com-

ponent is www.jdevinc.com/projects/

flashgallery/assets/cfcs/data.cfc. Notice

the .cfc is left off of the dot syntax for

the component. For you CFers out there,

think of this just like you would CreateO

bject(“component”, “projects.flashgallery.

assets.cfcs.data”) if you called it from the

root directory.

 The final parameter is the default

responder. You can use an object as the

default responder, and in our case we

used this to reference “this” class as the

default responder. I prefer doing it this

way but it is not, by any means, the only

way to do it. Remoting offers multiple

avenues so I strongly suggest you explore

all of them and then come up with your

own comfortable way of setting it up. We

now have a reference to our data.cfc that

we will call later to make our Remoting

call (see Listing 2).

 The first three functions are blank

on purpose. I read Kenneth J. Toley, III’s

article before stepping into using the

EventDispatcher and it raised an eye-

brow as to why three empty functions

would sit there. Well, the answer was

obvious enough when I opened the

EventDispatcher class. To keep it brief,

when we initialized the EventDispatcher

class we passed it the parameter this.

The initialize(object:Object) function

sets the object’s addEventListener,

removeEventListener, dispatchEvent, and

dispatchQueue functions to a reference

of the EventDispatcher class functions.

So, when you call the addEventListener()

function in the Data.as class you are,

in essence, calling the function in the

oop

More OOP in Flash
Taking the photo album to Flash, Part 2

by john c. bland

h
fi

g
u

re
 1

20 • MXDJ.COM 1 • 2005

EventDispatcher class.

 Moving on, we have the trigger func-

tion. Here we simply make the Remoting

call data_cfc.getAlbums();. Now, why do

we call getAlbums()? Simple. That is the

name of the function in the data.cfc com-

ponent. Remember, CFers, it is just like

using CreateObject() in ColdFusion. After

making our Remoting call we need a

responder function setup for the _Result

and _Status returns.

 getAlbums_Result(result) is the

result function. All we are doing here is

dispatching an event with the type of

dataIsHere and the data equal to the

result parameter. The same goes for the

getAlbums_Status function with a dif-

ferent type and parameter name. The

_Result function receives successful

returns while the _Status receives any

status errors (search for About handling

errors for a Connection object in the

Flash Help docs). The idea for this class is

merely “Get the data!” We’re not storing

any information in the class nor are we

actively performing any tasks. The pur-

pose here is to do something only when

told to just as parents used to say “speak

when spoken to!” LOL.

 That’s it for the Data.as class. In

a nutshell, we set up Remoting, the

EventDispatcher, and a way to trigger the

Remoting call. Now we need something

to trigger the Remoting call.

Manager.as Class
 What is the Manager class? Well, truth

be told, it’s the manager of the applica-

tion, hence the name. You could also

think of this as the controller, in a sense,

for the Model-View-Controller (MVC)

architecture. This app is not set up strictly

to the MVC architecture as this class does

some of what the view would do.

import classes.Data;

import mx.remoting.RecordSet;

 These are our import statements for

the class. We will use the Data.as class we

just created as well as RecordSet func-

tionality, although not much (see Listing

3).

 As you can see, the setup here is

the same as the setup in Data.as. The

variables will be covered as we access

or set them up, whichever comes first.

Everything starts with the Constructor

function. Manager() receives one param-

eter, which is stored in the root variable.

root is easy to confuse with _root but

don’t. You can rename the var timeline

if that is more comfortable for you. I like

root and I am comfortable using it so it is

my preference.

 Now we run the init() function. In

init() we are creating an empty MovieClip

on the stage at coordinates (35, 120).

On the stage we have two ScrollPanes

(thumbs_sp and large_sp). The two vari-

ables thumbsSP and largeSP hold a refer-

ence to the content of the ScrollPane,

not the ScrollPane itself. At first I had a

reference to the ScrollPane but realized I

don’t specifically reference the ScrollPane

as much as I would the content so there

is no need to use two sets of variables.

 Speaking of content, we need some

to work with. After setting up the refer-

ences to the ScrollPane content we

instantiate the Data.as class and store it

in the variable dataClass. At this point

Data.as has called its Constructor func-

tion, which ran the init() function. Since

that is done we can now subscribe an

event listener to the class to let us know

when the data is here and when the data

fails, hence the name I chose for the type.

The listener object is this class object so

we can set up a normal class function

instead of creating a new Object() to

listen for the event. All we need now is to

get the data by calling the Trigger() func-

tion.

 At this point the Remoting call will

take place and a result or status error

will be returned. Once the Remoting call

is back one of two events will happen:

dataIsHere or dataFailed (see Listing 4).

 These are the Event Listener func-

tions. As you can see, the names are

exactly the same as the event types seen

in the _Result and -_Status callbacks (see

the Data.as class). If you are familiar with

event listeners already you understand

the parameters received by both of these

functions. I like to call mine ev, but the

help docs and other places I’ve seen

name it evt. It doesn’t matter though.

Name it whatever you want. When I first

started with event listeners I was John

“Stick Strictly to the Help Docs” Bland,

but soon realized it is only a parameter

so I have control! The parameter is typed

as an object. In the object, with the cur-

rent setup, it contains type and data (see

Data.as class). The data will actually have

the result of the Remoting callback.

 The idea of the dataIsHere function

is to set up our album names in the left

column. So, what we initially do is set

a few variables we need. Since we will

duplicate MovieClips vertically we need

to manage our _y value. This is stored in

the local variable y and the RecordSet

length is stored in the local variable len.

For those of you running a for loop like

this: for(var i:Number = 0; i < ev.data,

length; i++){}, start setting ev.data.length

to a variable, preferably local if you are

in a class and you aren’t going to need

it outside of that particular function. It

may seem insignificant but each time the

loop reiterates the length of the ev.data

RecordSet has to be retrieved. This may

not destroy your application or Web site

but it could slow it down just slightly. Our

variables are set up and we are ready to

add our album MovieClips to the stage.

 The for loop is pretty simple in that

it doesn’t do anything ultra special. The

first thing we do is attach the album

MovieClip from the library to the root.

albums MovieClip we created in the

init() function. Everything here is normal

attachMovie() stuff except for the initOb-

ject. This is the parameter after the depth

and is an object. The first two parameters

are self-explanatory: _x and -_y. The

next two are class variables used in our

"What is real work?
For the purpose of this
article it is Actionscript
class development"

1 • 2005 MXDJ.COM • 21

Album.as class, coming to a paragraph

near you. myData is the album data. If

you remember how the query looked in

a cfdump, from October’s article (MXDJ,

Vol. 2, issue 10), we have a row in the

query with a custom column for images

which stores another query. Well, cfdump

isn’t available in Flash but we do have

the NetConnection Debugger. Figure

2 shows the Debugger with the result

of our Remoting call. Notice the _items

object has the possibility for multiple

records although only the 0 record is

shown here. You see all of the informa-

tion for the directory Christmas 2003 as

well as another object named images

which is actually another RecordSet (or

query for you CF’ers) with its own _items

object. This 0 record, and all subsequent

records, is the data being passed in the

myData parameter of the attachMovie().

So as the loop iterates through each of

the _items (0, 1, 2, etc.), that block of data

is sent to the new album being attached

to the stage. The last parameter is just a

reference to this instance of the Manager.

as class.

 One thing I had to resort to was mak-

ing the album name textfield multiline.

This was critical in my eyes. Without a

multiline textfield the album name could

be cut off at the end. That’s not good

enough for me. In light of this we have to

compensate for the fact that each album

could be a different height. That is what

the next line of code handles. It simply

takes the _height of the newly attached

MovieClip and adds it to the current run-

ning _y total stored in the y variable. To

give you an idea of what it does, trace

the y variable right after this line. You will

see it increment by the _height of the

newly attached MovieClip plus two, for

spacing. We’re all done here. Our albums

are now on stage and displayed properly

(see Figure 3).

 Just to show how to handle the data-

Failed event I added the function to the

class. Currently it doesn’t do anything

because I’m not building this application

for production use, but you could make

a modal popup display to let the user

know the data wasn’t retrieved properly,

or do another Remoting call in case it

was a fluke (be careful though as you

could ultimately have an endless loop if

_Status callbacks keep occurring).

 I think it is fitting we continue here

and cover the rest of this class, instead of

jumping into our Album.as class. There

isn’t much left so, let’s keep rolling (see

Listing 5).

 This is pretty much what the user

is waiting for...some images. Our crea-

teThumbnails function is called from the

Album.as class. Once called, the main

objective is to create the thumbnails

by looping over our RecordSet. First

thing we do is refresh our ScrollPane

so every time this function is called

a fresh MovieClip the content of the

ScrollPane is reloaded (which is an empty

MovieClip from the library). ScrollPane.

refreshPane(); “refreshes the scroll pane

after content is loaded” (Flash Help

Docs). Notice we used _parent instead

of just thumbsSP.refreshPane();. If you

trace(thumbsSP); you will see it is a refer-

ence to a MovieClip one (child) level into

the ScrollPane. Just like referencing any

other parent MovieClip, we use _parent

to access the ScrollPane itself. This is the

only time we need to access any of the

ScrollPanes directly. Now I’m sure you can

see why I didn’t care to store a reference

to the actual ScrollPane. Next we set up

variables.

 We are doing the same exact thing

here that we did in the dataIsHere func-

tion with a few subtle differences. The

first difference is that this is a horizontal

list so we are tracking a variable called

x instead of y, with obvious techni-

cal differences. The first parameter we

receive in this function is a RecordSet

named rs. This variable holds the images

RecordSet from the parent album and is

what we will loop through to create our

thumbnails. To loop we, of course, need

to create our len variable, which grabs

the length of the rs variable. Now we can

loop.

 As previously noted, we aren’t doing

anything new here other than referenc-

ing different destination MovieClips

(thumbsSP), attaching a different

MovieClip (Thumbnail), and changing

the _x value instead of the -_y. There is

one extra parameter in the initObject.

This is merely the name of the parent

album, which is the second parameter

of this function, album. The next thing

to do is increment the x variable by the

_width of the newly attached MovieClip

plus two pixels. The two pixels add a little

extra space between each thumbnail so

it doesn’t look like one long image. This

is also the extent of my design consider-

ation. Just kidding...

 Well, we can create thumbnails (see

Listing 6).

 This is a very simple way to load an

image. Now, by using a ScrollPane we

could have simply set the contentPath

of the ScrollPane to the location of our

image and it would have worked like a

charm. The reason I stuck with loadMov-

ie() is to follow suit with the thumbnails

setup. This also leaves you the ability to

ditch the ScrollPane and load it into your

own location or use the MovieClipLoader

class, as we will see later.

fi
g

u
re

 2

John C. Bland II is

CEO and chief devel-

oper for JDEV Inc.

(www.jdevinc.com), a

Phoenix-based New

Media firm currently

providing Internet con-

sulting and develop-

ment services for many

companies nationwide.

John's strong suit is

application functionality

and he loves utilizing a

combination of Flash,

Flash Remoting, and

ColdFusion to build Rich

Internet Applications,

Central Applications,

and Web products. He

credits a lot of his grow-

ing knowledge to the

continued fellowship,

support, and communi-

cation within the Flash

and Multimedia Users

Group of Arizona and

the Phoenix ColdFusion

UserGroup. Look for

new applications com-

ing out around the

first of the year from

John and JDEV Inc.

mxdj@jdevinc.com

22 • MXDJ.COM 1 • 2005

Our first task is to refresh our pane, just

like the createThumbnails() function,

then create our new MovieClip in the

largeSP variable (remember this is a refer-

ence to the root.large_sp’s content). Next

we loadMovie(), our file parameter, into

our new largeSP.large MovieClip and we

are done loading content. Of course we

could do a nice and pretty preloader but I

figured that is an upgrade you can imple-

ment, if you so desire. In the ColdFusion

version we would display the name of the

current image after “Pic :: ”. We’ll do the

same here by setting the text property

of root.image_txt to the name parameter

we will receive from the thumbnail.

 That’s pretty much the bulk of the

application as this class is by far the larg-

est, although small itself. If you were to

set up the FLA right now and test, you

would see the albums and that is it.

The functionality is there to create the

thumbnails and load the large image but

we haven’t given any life to the album

MovieClips.

 Well, just like a good soap opera I’ll

leave you in suspense. Hopefully you

don’t do as I did and give up on waiting

for the next episode. We are almost done

though, so hang in there. In my next arti-

cle we will cover the thumbnail images

and displaying the large images. See you

soon! :-)

Resources
 I thought I would highlight some of

the resources I used while writing this

article as well as when developing the

app. Of course the Flash Help Docs were

referenced numerous times for precise-

ness but other than that, here are some

more resources:

• Information and articles on Flash

Remoting: www.macromedia.com/

devnet/mx/flashremoting

• Information on implementing the

EventDispatcher class, Kenneth J.

Toley, III’s article: www.macromedia.

com/devnet/mx/flash/articles/creat-

ing_events.html

• Information on the MVC architecture:

www.macromedia.com/devnet/mx/

flash/articles/mv_controller.html.

Acknowledgements
 Most of all I want to acknowledge

God for Deut. 8:18, my family (Tia,

Adreana, and the newborn John C.

Bland III [bday 1/10/2005]), my parents,

and my brothers for continued sup-

port. T, thank you for allowing me time

to write! Mad Love! I want to send big

thanks to Sarge (sargeway.com/sarge)

, Robert Hoekman (widgetmaker.net),

The Flash and Multimedia Users Group

of Arizona (newly moved to gotoand-

stop.org), and The Phoenix ColdFusion

Usergroup (azcfug.com). I also have

to give mad props to Michael Hagel

(michaelhagel.com) for banging out the

site graphics for this app and for writ-

ing the design segment. Keep up the

sweet work! Oh, and I REALLY, REALLY

listened...for real!

fi
g

u
re

 3

24 • MXDJ.COM 1 • 2005

li
st

in
g

 2
li
st

in
g

 3

listin
g

 4
listin

g
 5

listin
g

 6

li
st

in
g

 1

class classes.Data{

 private var data_cfc:Object;

 private var remotingURL:String = "http://www.jdevinc.

com/flashservices/gateway";

 public function Data(){

 init();

 }

 public function init():Void{

 NetDebug.initialize();

 mx.events.EventDispatcher.initialize(this);

 data_cfc = NetServices.createGatewayConnection(remo

tingURL).getService("projects.flashgallery.assets.cfcs.

data", this);

 }

Listing 2

 function dispatchEvent():Void{

 }

 function addEventListener():Void{

 }

 function removeEventListener():Void{

 }

 public function trigger():Void{

 data_cfc.getAlbums();

 }

 private function getAlbums_Result(result) :Void{

 dispatchEvent({type:'dataIsHere', data: result});

 }

 private function getAlbums_Status(status) :Void{

 dispatchEvent({type:'dataFailed', data: status});

 }

}

Listing 3

class classes.Manager{

 private var dataClass:Data;

 public var root:MovieClip;

 private var thumbsSP:MovieClip;

 private var largeSP:MovieClip;

 public function Manager(r){

 root = r;

 init();

 }

 private function init(){

 root.createEmptyMovieClip("albums", root.getNextHigh-

estDepth());

 root.albums._x = 35;

 root.albums._y = 120;

 thumbsSP = root.thumbs_sp.content;

 largeSP = root.large_sp.content;

 dataClass = new Data();

 dataClass.addEventListener("dataIsHere", this);

dataClass.addEventListener("dataFailed", this);

 dataClass.trigger();

 }

Listing 4

 private function dataIsHere(ev:Object):Void{

 var y:Number = 0;

 var len:Number = ev.data.length;

 for(var i:Number = 0; i < len; i++){

 root.albums.attachMovie("album", "album" + (i+1),

root.albums.getNextHighestDepth(), {_x: 0, _y: y, myDa-

ta: ev.data.items[i], Manager: this});

 y += root.albums["album" + (i+1)]._height+2;

 }

 }

 private function dataFailed(ev:Object):Void{

 //do failed stuff here

 }

Listing 5

 public function createThumbnails(rs:RecordSet, album:

String):Void{

 thumbsSP._parent.refreshPane();

 var x:Number = 0;

 var len:Number = rs.length;

 for(var i:Number = 0; i < len; i++){

 thumbsSP.attachMovie("Thumbnail", "thumb" + (i+1),

thumbsSP.getNextHighestDepth(), {_x: x, _y: 0, album:

album, myData: rs.items[i], Manager: this});

 x += thumbsSP["thumb" + (i+1)]._width+2;

 }

 }

Listing 6

 public function loadLarge(file:String, name:String):

Void{

 largeSP._parent.refreshPane();

 largeSP.createEmptyMovieClip("large", 1);

 largeSP.large.loadMovie(file);

 root.image_txt.text = name;

 }

}

1 • 2005 MXDJ.COM • 25

A little patience yields a lot of rewards

The Flow Between

Fireworks
FreeHand&

These days it’s a slippery slope we wander between

graphics for onscreen viewing and graphics designed for

printing. Depending on your own background, you may be

more prepared for one application than the other. Working

with FreeHand and Fireworks can be slightly

daunting, but immensely rewarding.

by ron rockwell

26 • MXDJ.COM 1 • 2005

A little patience yields a lot of rewards

The Flow Between

Fireworks
FreeHand&

These days it’s a slippery slope we wander between

graphics for onscreen viewing and graphics designed for

printing. Depending on your own background, you may be

more prepared for one application than the other. Working

with FreeHand and Fireworks can be slightly

daunting, but immensely rewarding.

by ron rockwell

1 • 2005 MXDJ.COM • 27

 Macromedia defines Fireworks as

“the easiest way to create, optimize, and

export interactive graphics in a single,

Web-based environment.” FreeHand is

described as a vector-based drawing

application used to “create print and Web

graphic illustrations such as logos and

advertising banners.” If I may, I’d like to

add a little information to those descrip-

tions.

 Fireworks works primarily and ulti-

mately in bitmaps, or rasters as they are

also called. By definition, these files are

created for viewing on a computer moni-

tor in one way or another, usually via

the Internet. Vectors are used in some

drawing procedures, but in the end

are converted to bitmaps. The drawing

tools are adequate, but not nearly as

precise or numerous as those contained

in FreeHand. Conversely, FreeHand uses

vectors for the majority of the work done,

and has a few bitmap effects that both

soften and amplify the vector art.

 Fireworks isn’t the program to use if

you are ultimately going to print your

artwork. That’s not to say that you cannot

design and complete a logo in Fireworks

with the hopes of getting it on paper; it

only means that there’s a bit more work

to be done – in FreeHand. Alternately,

you shouldn’t spend a lot of time cre-

ating Web graphics in FreeHand that

could just as easily be done in Fireworks.

Instead, general or precise shapes can

be created in FreeHand and exported to

Fireworks for Web preparation.

 Beyond obvious differences in the

tools involved in creating artwork in the

two programs, there are major and minor

inconsistencies between the programs

guaranteed to irritate or confuse the best

of us, if not drive us mad! First we’ll dis-

cuss the ins and outs of Fireworks, then

the same situations in FreeHand in order

to help you create a smooth and efficient

workflow. Each of these programs is good

in its own right, but when they’re used

in combination, they become downright

powerful.

Fireworks
 To begin, you must remember that

finished artwork from Fireworks is bit-

mapped, and that means it is resolution

dependent. If you enlarge the artwork,

you’ll be embarrassed by jaggies and

crude imagery. One-size-fits-all does not

apply for Fireworks. What all this means is

that if you want a logo to fill a 300-pixel

by 150-pixel space, you must create the

logo at exactly that size. Yes, you can cre-

ate it larger and reduce it, but you’re bet-

ter off doing the artwork on a 1:1 basis.

 The resolution in a Fireworks docu-

ment is 72 ppi (pixels per inch, some-

times referred to as dots per inch) by

default, but that number can be changed

in the Modify>Canvas>Image Size menu.

Figure 1 shows the difference in resolu-

tion from 72 ppi to 144 ppi to 300 ppi.

Briefly, increasing the resolution increases

the image’s physical dimensions. What is

happening is that your monitor displays

72 ppi, and doubling the image’s resolu-

tion requires the image to double in size

– on the monitor – in order to maintain

the 72 ppi view. If you notice the file

dimensions, you’ll see that the number

of pixels will increase as the resolution

increases, while the physical dimensions

of the object remain the same. If you look

a little more closely at Figure 1, however,

you can see that the crosshatched pat-

terned fill remains the same size through-

out the resolution range. If you did a logo

such as this at 300 ppi and saved it as

a TIFF file, the pattern would be pretty

much negated when ink hit the paper. By

the same token, if you did the logo at 300

ppi and changed its resolution to 72 ppi,

you may not be pleased with the way

some effects appear. So, to summarize,

it’s best to do your Fireworks Web-bound

artwork at same size or 1:1 to keep your

sanity.

 Fireworks has many nice bitmap

effects, such as shadows, bevels, glows,

transparency, and so on, but depending

on the file type or method of export, not

all of these effects will be retained. As

long as your art is headed for the Web,

there’s nothing in Fireworks that won’t

work just fine.

Export to Freehand
 The rub can happen when you

remove an object from Fireworks for

use in another program. This article will

only describe what happens between

Fireworks and FreeHand.

Raw File Transfers

 If you have both FreeHand and

Fireworks running, it’s pretty simple to

select the Fireworks artwork and drag

and drop it onto the FreeHand page.

Be sure to save both documents before

attempting any file transfers! Crashes

usually happen when you can least afford

them. You can also copy the Fireworks

object and paste it into FreeHand.

figure 1

fi
g

u
re

 2

28 • MXDJ.COM 1 • 2005

However the most convenient method is

to select the object or objects and click

on the Quick Export button at the top

right corner of the Fireworks document

window. That menu offers exports to

FreeHand, Director, Dreamweaver, and

Flash. There’s an extended “Other” menu

that allows you to export to other pro-

grams as shown in Figure 2. Any of these

methods will give you the optimum file

transfer for the next intended use of the

graphic. In the case of FreeHand, copy

and paste, drag and drop, or copying

from the Quick Export menu, all provide

an editable illustration. Depending on

the settings you apply in the various

dialog boxes that will appear, most of the

artwork will remain editable – or not, as

you see fit – in vector form.

 Some attributes may be lost in the

translation. For instance, if you have a

patterned fill, it will not appear when it

is exported to FreeHand (see Figure 3).

At first blush, you may think that you

could simply apply the appropriate pat-

tern within FreeHand, but be advised

that patterned fills in FreeHand are not

recommended for high-quality printing

as they default to 72 ppi. If you wish

to have a patterned fill, you’re best off

creating a tiled fill or otherwise creat-

ing the fill manually. Fireworks cannot

have a stroke less than a pixel due to its

resolution-dependent makeup – after

all, you can’t show half a pixel at any

resolution. So you’ll have the advantage

of being able to fine-tune stroke widths

once the graphic is in FreeHand. But the

main thing you’ll notice is the color shift.

Fireworks is RGB, period (WMBP not-

withstanding). Even when you convert a

piece of art to a Grayscale GIF or use just

two colors in the document, it’s still an

RGB file. Disregarding black and white

files, FreeHand will use its RGB rendering

to display the image, and you can bet

that colors will look completely different.

The colors are correct, however. If you

want to assure yourself, use the eyedrop-

per tool in either program and drag a

color selection to the Color Mixer panel.

But… if the image is going to be printed,

then it will be converted to CMYK and

you will have a color shift, usually a dull-

ing or desaturation of colors. There’s

nothing you can do about that. To allay

your fears or concerns in FreeHand,

you can choose Xtras>Colors>Name

All Colors, then in the Swatches panel

convert all those colors to CMYK. You’ll

see an immediate difference on-screen.

Print the document and make any adjust-

ments you think are necessary.

 Another way to get graphics into

FreeHand is to use Fireworks’ Export

menu. You can choose from PNG, JPG,

GIF, TIFF, BMP, WBMP, and PICT. However,

if you take this route you won’t be able

to edit the file in FreeHand because the

file becomes bitmapped (see Figure 4).

You will be able to use the Fireworks

roundtrip editing button and edit the file

back in Fireworks, though. The resolu-

tion of an exported object will remain

the same. On the other hand, if you’ve

dragged and dropped, copied and past-

ed, or used the Quick Export options, the

artwork will take on the resolution of the

FreeHand document. They don’t make it

simple, do they?

Export to Fireworks
 Okay, now you have to switch hemi-

spheres in your brain – we’ll be talking

about vectors originating in FreeHand

and being introduced into Fireworks.

In this case, you’ve designed a logo in

FreeHand and now you want to place it

on the Web. Going in the opposite direc-

tion, you can drag and drop, or copy

and paste FreeHand artwork into an

open Fireworks document. You can also

choose File>Export, and choose from

many different formats, but PNG, JPG,

or GIF would work best if you’re going

straight to the Internet with the file. Our

original FreeHand logo is shown in Figure

5. Because of the greater number of tools

and tricks available, the logo is a bit more

complicated, with tiled fills, a drop shad-

ow made from a blend, and many layers.

 You must pay attention to the condi-

tion of the artwork when you move it

from FreeHand to Fireworks. For instance,

if everything is ungrouped and you copy

and paste or drag and drop, the art will

land in Fireworks pretty much as it was in

FreeHand. There’s quite a bit of anti-alias-

ing that goes on, and any strokes that are

thinner than 1 point become a full point

in width – which can come as quite a sur-

prise on detailed drawings or logos! You

will be able to move, edit, or otherwise

manipulate virtually all the FreeHand

objects in your Fireworks document.

 Figure 6 shows a drag-and-drop ver-

sion of the FreeHand logo in Fireworks.

Notice that a half-point white stroke

around the text has gained weight – and

doesn’t look half-bad. Oddly enough, the

text is softer, but the tiled background

is harsher. Regarding the tiled fill, in

FreeHand the tiled fill is simply applied

to the ellipse, and there’s no “overflow”

of the fill. But Fireworks sees the entire

tiled fill as a graphic inside a mask, so the

fill object is much larger than the actual

graphic.

 Bitmap and vector effects carry over

with the FreeHand artwork when you

copy and paste or drag and drop. The

effects are editable, but as you might

expect, attempting changes to some

objects with effects can give you a

surprise or two. Those surprises can be

remedied easily enough. One instance

is a gradient fill that has a drop shadow.

Changing a feathered effect to a hard

edge results in the gradient's chang-

ing directions. It’s nothing that can’t be

fixed quickly, but it’s something to be

aware of.

fi
g

u
re

 3
fi

g
u

re
 4

fi
g

u
re

 5
fi

g
u

re
 6

1 • 2005 MXDJ.COM • 29

 If you have increased the Raster

Effects Setting in FreeHand to 300 ppi

to accommodate drop shadows or other

effects, those effects will acquire the res-

olution of the Fireworks document. If it

is a brand new Fireworks document, that

means the effects will drop to 72 ppi. You

can enlarge the vector-based artwork in

Fireworks with complete confidence that

the image will not be distorted as a bit-

map would. Any vector or raster effects

you’ve applied to the path or object

import fine, and will be scaled properly

with the object.

 Layered FreeHand artwork will retain

the layers, but layer names are lost.

Instead, objects from individual layers are

given generic names such as “Composite

Path” or “Group.”

 There’s a big difference, though, if

you group the artwork before placing

it in Fireworks. It becomes a single flat-

tened bitmap graphic that can only be

reshaped or drawn over, and tiny details

like thin strokes also disappear. You will

not be able to edit any of the vectors that

created the object, but bitmap editing is

possible.

 Other differences occur when you

have an open Fireworks document and

you choose to import a FreeHand docu-

ment. The first thing you’re greeted with

is the Vector File Options window shown

in Figure 7. Obvious and not-so-obvi-

ous choices are available and both are

convenient and time-saving. For instance,

if you know you’ll want the FreeHand

object to be smaller in Fireworks, you can

change the scale right off the bat. You

can also choose to distort the object’s

size by inputting width and height val-

ues. The resolution can also be modified.

As a default, the FreeHand document

will be at 300 ppi (except for any raster

effects – keep your mind clear!). There are

choices for Anti-Alias effects on paths or

text, and the level (Smooth, Strong, Crisp,

or System).

 Then you can decide how you want

the file converted, starting with the page

or pages you wish to import. If you want

a specific page in a multipage document,

select the page number from the drop-

down menu. You can choose instead to

open pages as individual frames.

 The next dropdown menu concerns lay-

ers; you can ignore them, remember them,

or convert the layers to frames, depend-

ing on what you want to do in Fireworks

– there’s no magic bullet for all jobs. Last,

you can choose to include layers that you’ve

turned off in FreeHand (invisible layers), or to

include background layers or not.

 Then you’re down to the Render as

Images section, where you choose the

level of simplification you wish the art-

work to have. By setting an amount in the

text fields, you tell Fireworks to convert

the vector object into a bitmap – thereby

minimizing your editing choices. You can

set these numbers high enough to keep

everything editable, but at the expense

of a sluggish Fireworks document.

 If you select a compound path

(masked object) in Fireworks and place

it into FreeHand, you’ll be surprised to

see the object as if you’d chosen “Cut

Contents” from the Edit menu. What

happens is that the objects involved

in the compound path are separated,

but grouped. To restore order, simply

ungroup the group, cut the appropriate

objects and use Edit>Paste Inside (Paste

Contents).

 On more than one occasion (today in

fact), I have imported an ungrouped, fairly

complex FreeHand document and seen

some objects rendered at different scales

than others. That frankly scares the heck

out of me, so I’m extremely watchful.

Text Issues
 There’s one minor trouble area when

it comes to dealing with text, and that’s

kerning. If you apply a -10% kerning to

a block of text in FreeHand, it will read

as -8% in Fireworks. The physical change

between the letters will remain the same,

but they pick up the differing values. I

bring this up in case you’re working with

text back and forth between the two

programs and want to remain consistent.

Figure 8 shows the differences. As you

can see, a -10% kern in Fireworks will

probably not be acceptable in most cases

– at least in this particular font.

Editing Fireworks Objects
from Freehand
 Just as Fireworks has its Quick Export

button to get a document into another

program, FreeHand allows you to edit

bitmaps directly in Fireworks through

the Edit in Fireworks button at the bot-

tom of the Object panel. Simply select

a bitmap object – it could be a digital

photo, or have been created in Fireworks

– and click the Edit in Fireworks button.

Fireworks will start up if it’s not open, and

you’ll be greeted with a Find Source for

Editing window as shown in Figure 9.

fi
g

u
re

 7

fi
g

u
re

 8

30 • MXDJ.COM 1 • 2005

 The Find Source window is much

more important than you may at first

think, because you can cause irreparable

damage to an original file if you’re not

paying close attention. Here’s how it

works: you are given the immediate

choice of selecting a PNG or the actual

file to edit. If you select Use This File, then

you will be editing the original docu-

ment, just as if you had opened the origi-

nal in Fireworks (or Photoshop) and done

the editing. Changes are permanent. On

the other hand, you can choose Use a

PNG. At that point a navigation window

appears so you can find the original PNG

to work on. If you don’t have one, the

original file opens anyway… scary stuff.

When you’re not sure whether you want

to make lasting changes to an image,

it’s best to do a Save As and work from a

new copy of the image just to be safe.

 At the bottom of the window is the

Fireworks Source Files dropdown menu,

and you have three choices: Always Use

Source PNG, Never Use Source PNG, or Ask

When Launching. The last choice speaks

for itself; Always Use Source PNG will

open the Fireworks PNG for the placed

image. The source PNG and the placed

image will both be updated – changes are

permanent. Never Use Source PNG opens

the placed image, whether a source PNG

can be found or not, and the editing only

applies to the placed image – the origi-

nal (wherever it may be) is not touched.

Making a selection from this menu will

apply to all future edits, and will pre-empt

the Find Source window.

 When you’re done with the editing,

click the Done button. You’ll be returned to

FreeHand, the image will take a few seconds

to redraw, and you can get back to work.

 If your bitmap has been placed from

Fireworks in the first place, you’ll bypass

the Find Source window and the original

Fireworks document will open right

away.

 I hope I’ve shed a little light on work-

ing between and with both Fireworks

and FreeHand. With a little patience,

you can get super results for print

from FreeHand, and for the Web with

Fireworks.

Illustrator, designer, author, and Team

Macromedia volunteer Ron Rockwell lives

and works with his wife, Yvonne, in the

snowy Pocono Mountains of Pennsylvania.

He is the author of FreeHand 10 f/x &

Design, and co-authored the Studio MX

Bible. He has just introduced a FreeHand

course available at www.brainstormer.org.

Many thanks to John Nosal, Peter Moody,

Bob Sander-Cederlof, and other engineers

at Macromedia for the technical editing and

support they provide.

guru@brainstormer.org

fi
g

u
re

 9

1 • 2005 MXDJ.COM • 31

Visual Debugging Tools for

Shockwave 3D
ecently, I have been working in Shockwave3D

in Lingo and JavaScript syntax. Regardless of

what I am writing, I keep running into issues

that can be summed up by the following

phrase: I don’t know exactly what I’m doing.

More precisely, I don’t know exactly what I am

doing when I am doing it. I’m figuring it out.

And that’s what programming interactive

things is all about: finding a way to do what you need

to do, so that the users will have the experience you

want them to have. Unfortunately, it is sometimes

difficult to tell exactly what your code is doing, and

this is particularly true in 3D environments.

R

by andy phelps

32 • MXDJ.COM 1 • 2005

Visual Debugging Tools for

Shockwave 3D
ecently, I have been working in Shockwave3D

in Lingo and JavaScript syntax. Regardless of

what I am writing, I keep running into issues

that can be summed up by the following

phrase: I don’t know exactly what I’m doing.

More precisely, I don’t know exactly what I am

doing when I am doing it. I’m figuring it out.

And that’s what programming interactive

things is all about: finding a way to do what you need

to do, so that the users will have the experience you

want them to have. Unfortunately, it is sometimes

difficult to tell exactly what your code is doing, and

this is particularly true in 3D environments.

R

by andy phelps

1 • 2005 MXDJ.COM • 33

 So with these issues in the back of my

mind, I was working on my lightmap gen-

eration tool, and I was really getting stuck.

A “lightmapper” is a tool that pre-gener-

ates, through raytracing or other means, a

series of maps that represent the lighting

in a 3D scene as textures on the individual

objects. This is a very popular technique in

game-level design, as Brian Robbins noted

at MAX, and as several authors have noted

in the game development community.

Figure 1 shows a few sample renders from

my tool in progress.

 The problem I was having was in pro-

jecting the shadows, particularly in figur-

ing out the angle to each light from the

points along the surface. I was never real-

ly “sure” of exactly where the ray was that

I was checking against. This is relatively

easy to figure out for a single light, but I

was getting very confused when calculat-

ing multiple light sources (see Figure 2).

In order to figure out just what was going

on, I used a strategy that I have used in

the past: build a visual “prop,” or “stand-in”

of the ray itself. The only complication is

that Shockwave3D has no #line primitive.

No problem! Just make a very long, skin-

ny triangle. Listing 1 shows a Lingo han-

dler that creates a “connector” object: it

has a triangle that it uses as a “line,” which

it can snap between a beginning and end

point. Additionally, it can color each end

of the “line” a different color, and blends

the two together along the triangle face.

 Using these lines, I was able to trace

out each and every light path in the scene,

and get a sense of whether or not it was

doing what I wanted it to do (see Figure

3). This was very handy, but this tool isn’t

limited to that specific use. I’ve used it

in the past to represent surface normals

(something I wish S3D had a #debug flag

for), direction vectors, a “point at” vector

between two objects, and even rotational

axes when I haven’t been able to see the

ones drawn through the #debug flag.

(For some reason, the axes generated by

Director are all black when drawn with the

DirectX7_0 renderer on my nVidia cards).

Because each end of the “line” can be col-

ored separately, they can be used to repre-

sent directional vectors, rather than just a

straight connection between two points.

 In order to get the “lines” to show up

well in a debug environment, I generally

create a custom shader that ramps up

the emissive and ambient qualities (and

sets some flags so that the vertex colors

actually have an effect). For the script in

Listing 1, I used the shader props set in

Listing 2. I’ve also used “lines” in a similar

way in JavaScript syntax.

 Being able to “see” what is actually

going on has proved invaluable for this

and several other projects. Using color

and shape makes it much easier to tell

what the code is doing than an itera-

tive ‘run and see’ approach. By thinking

of debugging visually, tools can be

constructed that make it easier to see

just what is going on. If you have either

already built tools, or are thinking of

writing some after seeing these simple

examples, I encourage you to share them

with the community as you are able, to

build up a library of visual aids that help

us in our daily work.

fi
g

u
re

 1

34 • MXDJ.COM 1 • 2005

figure 2
fi

g
u

re
 3

36 • MXDJ.COM 1 • 2005

li
st

in
g

 1

--

--3D DEBUG LINE

--

property p_vPosA -- position A of line

property p_vPosB -- position B of line

property p_mshMesh -- line mesh

property p_mModel -- line model

-- ThreeDLine::New()

-- Purpose:

-- a_sName - string name of the line to be created

-- a_aColor - array of 2 rgb colors [start, end]

-- a_vPoint1 - vector start of line

-- a_vPoint2 - vector end of line

-- a_shShader - shader to be applied to the line

on new me, a_sName, a_aColor, a_vPoint1, \

 a_vPoint2, a_shShader, a_3dWorld

 me.p_vPosA = a_vPoint1

 me.p_vPosB = a_vPoint2

 --create a mesh for this connector

 if voidP(a_3dWorld.model(a_sName)) then

 --continue

 else

 return 0

 end if

 me.p_mshMesh = a_3dWorld.newMesh(a_sName,1,3,3,3,0)

 --set color list

 me.p_mshMesh.colorList = [a_aColor[1], \

 a_aColor[2], \

 a_aColor[1]]

 --set vertex list

 me.p_mshMesh.vertexList = [vector(0,0,0), \

 vector(0,100,0), \

 vector(100,100,0)]

 --set normal list

 --NOTE: this is a hack, normals here make ok

 --lines, but are not technically correct for 3D

 --lighting...

 me.p_mshMesh.normalList = [vector(1,1,1), \

 vector(1,1,1), \

 vector(1,1,1)]

 --set the vertices and colors into the mesh

 me.p_mshMesh.face[1].vertices = [1,2,3]

 me.p_mshMesh.face[1].colors = list(1,2,3)

 --build the triangle

 me.p_mshMesh.build()

 --create a model from our triangle

 me.p_mModel = a_3dWorld.newModel(a_sName, \

 me.p_mshMesh)

 --set render ops for best debug lines

 me.p_mModel.visibility = #both

 --set shader on this model

 me.p_mModel.shader = a_shShader

 me.mUpdate(me.p_vPosA, me.p_vPosB)

 return me

end ThreeDLine

-- ThreeDLine::mUpdate()

-- a_vPointA - vector new start position

-- a_vPointB - vector new end position

on mUpdate me, a_vPointA, a_vPointB

 -- make the connector position itself between the A

 -- and B parent nodes. This is a little but tricky.

 me.p_vPosA = a_vPointA

 me.p_vPosB = a_vPointB

 vPosC = vector(me.p_vPosA.x, \

 me.p_vPosA.y - 2.000, \

 me.p_vPosA.z - 2.000)

 me.p_mshMesh.vertexList = [me.p_vPosA, \

 me.p_vPosB, \

 vPosC]

Andrew Phelps is

an assistant profes-

sor in the B. Thomas

Golisano College

of Computing and

Information Sciences at

the Rochester Institute

of Technology. He has

an academic back-

round in information

technology, as well as

traditional fine arts and

computer animation.

His work using Director

has been featured at

the Director-Online

User’s Group (DOUG)

as well as the DevNet

Center at Macromedia.

Andy regularly teaches

coursework in multi-

media programming,

game programming, and

simulation/visualization.

amp@it.rit.edu

38 • MXDJ.COM 1 • 2005

li
st

in
g

 2

end mUpdate

//--- --

function ThreeDLine(a_sName, a_aColor,

 a_vPoint1, a_vPoint2) {

 this.p_vPosA = a_vPoint1;

 this.p_vPosB = a_vPoint2;

 //create a mesh for this connector

 this.p_mshMesh = _global.D3D_WORLD.getProp(

 "g_3DWorld").newMesh(a_sName,1,3,3,3,0);

 //set color list

 this.p_mshMesh.colorList = list(a_aColor[1],

 a_aColor[2],

 a_aColor[2]);

 //set vertex list

 this.p_mshMesh.vertexList = list(vector(0,0,0),

 vector(0,100,0),

 vec-

tor(100,100,0));

 //set normal list

 //NOTE: this is a hack, normals here make ok

 //lines, but are not technically correct for 3D

 //lighting...

 this.p_mshMesh.normalList = list(vector(0,1,0),

 vector(0,1,0),

 vector(0,1,0));

 //set the vertices and colors into the mesh

 //NOTE: Need to use getPropRef to parse the lingo

 //arrays that are embedded in the S3D Xtra

 this.p_oFace = this.p_mshMesh.getPropRef("face",1)

 this.p_oFace.vertices = list(1,2,3);

 this.p_oFace.getPropRef("face", 1).colors =

 list(1,2,3);

 //build the triangle

 //this.p_mshMesh.generateNormals(symbol("flat"));

 this.p_mshMesh.build();

 //create a model from our triangle

 this.p_mModel = _global.D3D_WORLD.getProp(

 "g_3DWorld").newModel(this.p_sName, this.p_mshMesh);

 this.p_mModel.shader = _global.D3D_WORLD.getProp(

 "g_3DWorld").

getProp("shader",1);

 this.p_mModel.shader.shininess = 0;

 this.p_mModel.shader.blend = 10;

 this.p_mModel.shader.texture = 0;

 this.p_mModel.shader.emissive = color(50,50,50);

 this.mUpdate(this.p_vPosA, this.p_vPosB);

 return this;

}

/*---

Connector::mUpdate

---*/

ThreeDLine.prototype.mUpdate = function(a_vA, a_vB) {

 //make the connector position itself between

 //the A and B parent nodes.

 this.p_vPosA = a_vA;

 this.p_vPosB = a_vB;

 var vPosC = vector(vPosA.x,

 vPosA.y - 2.000,

 vPosA.z - 2.000);

 this.p_mshMesh.vertexList = list(vPosA,

 vPosB,

 vPosC);

}

//---

1 • 2005 MXDJ.COM • 39

y now you’ve probably heard about Captivate
(formerly RoboDemo), Macromedia’s tool for
creating engaging software simulations, demon-
strations, and tutorials. You’ve decided to take the
plunge and create your first “captivating” demon-
stration, but how do you get started? This article will
walk you through the basics of producing your very
first Captivate project. If you don’t own Captivate,
you can download the 30-day trial from
Macromedia’s Web site. Captivate is currently
Windows only.B

by lisa heselton

getting started

captivate
macromedia

with

40 • MXDJ.COM 1 • 2005

y now you’ve probably heard about Captivate
(formerly RoboDemo), Macromedia’s tool for
creating engaging software simulations, demon-
strations, and tutorials. You’ve decided to take the
plunge and create your first “captivating” demon-
stration, but how do you get started? This article will
walk you through the basics of producing your very
first Captivate project. If you don’t own Captivate,
you can download the 30-day trial from
Macromedia’s Web site. Captivate is currently
Windows only.B

by lisa heselton

getting started

captivate
macromedia

with

1 • 2005 MXDJ.COM • 41

Before you start, it’s a good idea to plan

ahead. That starts with asking some very

basic questions:

• What are your objectives?

• Who will your audience be?

• How will you distribute your work?

 If you know the answers to these

questions beforehand, it will be much

easier to develop your project. Captivate

calls projects movies; like a movie, they’ll

have a beginning, a plot in the middle,

and a conclusion. Even for small mov-

ies, it’s a good idea to sketch out a

storyboard. It doesn’t have to be fancy

(doodles on napkins are pretty common-

place), but it should help you determine

the flow of your content.

 Having planned your project, you

next need to identify what you will need

to capture. This means you have to make

sure that you have everything you need

before you begin – additional graph-

ics, audio files, scripts – anything you

may want to include in your movie. You

can add elements later, but the more

prepared you are before you begin, the

easier it will be to complete your work.

 If you’re not sure about what types of

elements you might want to include, try

to find some samples of a project similar

to yours. Take notes about the elements

that are used, and how others use them

successfully. For some projects, an audio

soundtrack might be too distracting, but

for others it may enhance the visuals.

Try to get feedback from potential end

users during development to make sure

you don’t go too far with any added ele-

ments.

Tip: If your project covers several objec-

tives or describes a lengthy process, you

should break up or ‘chunk’ your work into

smaller segments. This helps the viewer

understand the information, and also helps

keep your file sizes smaller. If you try to

cram too much action into one movie, you

may end up choking systems with older

graphic cards. Instead, create a menu for

each segment and create separate movies

accordingly. This can be done using the

MenuBuilder application that is a part of

Captivate.

 Once you have a good idea of what

your movie will need and how it should

flow, you can begin. You may need to do

several “takes” to get some elements of

your project exactly how you want them,

but most actions that you record will be

easy to adjust and edit after you have

finished recording.

Starting a New Project
 When you first open Captivate, you

are presented with a dialog screen. This

screen shows you what you can do within

Captivate – open an existing movie, cre-

ate a new movie, etc. Since this is your

first Captivate project, you’ll select the

"Record or create a new movie" option

(see Figure 1).

 Once you’ve chosen to start a new

movie, Captivate still needs more infor-

mation from you – it needs to know

whether you’ll be recording an applica-

tion, the full screen, or a custom por-

tion of your screen. If you’re recording

an application, you can snap it into a

Captivate window to make it smaller.

This enables you to fit your demo onto

another interface (such as a Web page),

and it reduces the overall size of your

file. If you’re making a movie that will be

distributed on a disc or presented full-

screen (such as a kiosk), then you can

choose to capture the entire screen, or

even select a custom portion, such as if

you wanted to eliminate certain areas

(e.g., the task bar). We’ll do our first movie

from an application (see Figure 2).

 Now you’ll need to navigate to the

application that you want to record.

Captivate will give you a series of options

for recording a specific size or a preset

size. If you select the drop-down menu

that says "Optionally, select a window

you’d like to record", the application that

you choose will resize to your specified

dimensions (see Figure 3).

fi
g

u
re

 1

fi
g

u
re

 2

fi
g

u
re

 3

fi
g

u
re

 4

42 • MXDJ.COM 1 • 2005

 Before we dive into our recording, we

may want to adjust some of the recording

options by choosing the Options button

from the Recording dialog. You can select

the language that you want to use, choose

a style for your screen prompts and dia-

logs, and choose what kind of recording

to make. Since we’re just getting started,

we’ll create a demonstration, which is a

movie that shows the viewer the steps

needed to perform a function or task. For

now, we won’t be recording any narration

or changing any of the settings in the

other tabs. The options to hear keystroke

and camera sounds are for your assistance

only; these sounds will not appear in your

final project (see Figure 4).

Lights, Camera, Action!
 Now that your settings have been

completed, press OK in the Recording

Options dialog, and then the Record

button to begin recording. Place the

content so that the viewer can fol-

low along with you comfortably. It is

possible to capture narration while

recording, but you will get much better

results if you concentrate on record-

ing the screen actions separately from

the audio. You may want to read along

with a script when you are recording so

that your actions are in sync with any

narration that will be added. You can

adjust the timing of your actions later if

needed.

Tip: You’ll want to make a static page (or

pages) to place at the beginning of your

project to introduce your objective(s) and

tell the audience what the project is about,

what level of experience and knowledge

they should have, and what they should be

able to accomplish once they have viewed

it.

 When recording, any object that

you select on the screen will trigger a

screen capture – for example, if you press

a Submit button, Captivate will take a

snapshot of that action and record it. For

more dynamic actions, such as typing a

file name in a Save As…dialog, Captivate

will automatically record the full process

fi
g

u
re

 5

"Once you have a good idea of what
your movie will need and how it
should flow, you can begin"

1 • 2005 MXDJ.COM • 43

as a video segment.

 When you have finished capturing

your actions, you will need to press the

End key to stop recording. Captivate

will then assemble your work and open

your movie in Storyboard view, which

shows you your project in slides (see

Figure 5).

 You can now preview your project

by selecting Preview from the top of

the screen. To play the entire project

from start to finish, select Movie from

this menu, or press F4.

 If your project is absolutely perfect,

great! You can skip ahead to the section

on Publishing next month. Chances are,

though, that you’ll need to make a few

tweaks and adjustments to your work.

Editing Your Work
 Once you’ve finished the recording

process, there are two primary types of

edits you may need to make: changing

what you recorded (moving elements,

deleting screens, adjusting timing, and

so forth) and adding elements to what

you recorded (sound, external files,

additional Captivate recordings, etc.).

 If you don’t like the location of a

slide or section of your project, you can

make adjustments easily by selecting

the desired slides and then dragging and

dropping them where you want them.

If you’re familiar with other slide-based

applications, like PowerPoint, this is a

familiar process. When you drop the

slide where you want it, the slides will

renumber for you. You can also remove a

slide(s) by right-clicking on it and select-

ing Delete Slide. A dialog will ask if you

really want to delete the slide. Click OK

to delete it. If you need to make adjust-

ments to a single slide, you can double-

click on it to go into Edit mode for that

slide.

Modifying Captions
 Captivate automatically inserts text

into each slide to describe the actions

that were recorded. These are called cap-

tions. If you need to modify a caption,

double-click on the slide you want to

edit, then double-click on the caption

itself. The Text Caption dialog will appear.

From here, you can change the caption’s

style, font, font size, font color, and even

the text itself. Keep in mind that you

will want to select only fonts that will be

installed on a user’s system, just like you

would for a Web page. Press Apply to

preview your modifications (see Figure 7).

 If you select “Apply properties to all

‘captions’ in the movie,” a global style will

be created. All captions (existing or new)

will take on that style within your movie.

When you are finished making changes,

press OK.

 If you need to adjust the caption’s

size, drag one of the caption's selection

handles to expand or contract the cap-

tion. Be careful not to obscure any text

when resizing. To move the caption, click

once inside it, and then drag it into place.

For more precise placement, use the

arrow keys on your keyboard.

Adjusting Timing
 One of the greatest features in

Captivate is its timeline. The timeline

allows you to adjust when individual

elements occur, as well as their duration.

Elements can be any of the audio, text, or

visual pieces that make up your slide.

 This is especially useful for when you

want to lengthen or shorten a segment

after recording, or if you need to change

the order in which elements appear. If you

click on an element in the timeline to select

fi
g

u
re

 6

fi
g

u
re

 7
Advertising Index

 Advertiser URL Phone Page

 CFDynamics www.cfdynamics.com 866-233-9626 5

 Ektron www.ektron.com/cfdj 866-4-EKTRON 24

 EV1 Servers www.ev1servers.net 800-504-SURF 9

 HostMySite.com www.hostmysite.com/mxdj 877-248-4678 35

 Interakt http://ktml.interaktonline.com/ 6

 Intermedia.net www.intermedia.net 800-379-7729 23

 ISSJ www.ISSJournal.com 888-303-5282 37

 IT Solutions Guide www.sys-con.com 201-802-3021 45

 Macromedia www.macromedia.com/go/volvo 415-252-2000 Cover 2

 Macromedia www.webpublishingsystem.com 415-252-2000 Cover 4

 Nidus Corp. www.brainstormer.org 888-894-3840 31

 PaperThin www.paperthin.com 800-940-3087 17

 Seapine Software www.seapine.com/webdev 888-683-6456 13

 ServerSide www.serverside.net 888-682-2544 Cover 3

 Web Services Edge 2005 www.sys-con.com/edge 201-802-3066 47-56

44 • MXDJ.COM 1 • 2005

Advertising Index

 Advertiser URL Phone Page

 CFDynamics www.cfdynamics.com 866-233-9626 5

 Ektron www.ektron.com/cfdj 866-4-EKTRON 24

 EV1 Servers www.ev1servers.net 800-504-SURF 9

 HostMySite.com www.hostmysite.com/mxdj 877-248-4678 35

 Interakt http://ktml.interaktonline.com/ 6

 Intermedia.net www.intermedia.net 800-379-7729 23

 ISSJ www.ISSJournal.com 888-303-5282 37

 IT Solutions Guide www.sys-con.com 201-802-3021 45

 Macromedia www.macromedia.com/go/volvo 415-252-2000 Cover 2

 Macromedia www.webpublishingsystem.com 415-252-2000 Cover 4

 Nidus Corp. www.brainstormer.org 888-894-3840 31

 PaperThin www.paperthin.com 800-940-3087 17

 Seapine Software www.seapine.com/webdev 888-683-6456 13

 ServerSide www.serverside.net 888-682-2544 Cover 3

 Web Services Edge 2005 www.sys-con.com/edge 201-802-3066 47-56

it, you can drag it left (to place it earlier)

or right (to have it come in later). If you

need to lengthen or shorten an element’s

duration, select it on the right-hand side,

where it ends, then move the double arrow

cursor left to shorten it or right to lengthen

it. You’ll see the selection expand or shrink

accordingly. You can preview just the slide

you’re editing by pressing F3.

Summary
 Part Two of this article will go into

detail on adding narration and audio to

your project, importing other assets into

your project, and adding a few dynamic

elements to give it some life. Then we’ll

actually publish your masterpiece to

share it with the rest of the world. See

you then!

Additional Resources:
• Captivate Demo Download: www.

macromedia.com/cfusion/tdrc/index.

cfm?product=captivate

• Captivate Developer Center: www.mac

 romedia.com/devnet/captivate/.

fi
g

u
re

 8

"One of the greatest
features in Captivate is

its timeline"
Lisa Heselton is a contractor

at U.S. Customs and Border

Protection, developing instruc-

tor-led and Web-based learning

products. She also manages the

Department of Homeland Security

Macromedia Users Group (www.

dhsmmug.us). Lisa’s background

includes marketing, video produc-

tion, writing, business and artist

management, Web design/devel-

opment, and training.

l.kavka@gmail.com

46 • MXDJ.COM 1 • 2005

events
10 pager

1 • 2005 MXDJ.COM • 47

events
10 pager

48 • MXDJ.COM 1 • 2005

events
10 pager

1 • 2005 MXDJ.COM • 49

events
10 pager

50 • MXDJ.COM 1 • 2005

events
10 pager

1 • 2005 MXDJ.COM • 51

events
10 pager

52 • MXDJ.COM 1 • 2005

events
10 pager

1 • 2005 MXDJ.COM • 53

events
10 pager

54 • MXDJ.COM 1 • 2005

events
10 pager

1 • 2005 MXDJ.COM • 55

events
10 pager

56 • MXDJ.COM 1 • 2005

t is hard to believe it’s been

nearly 10 years since Macromedia

ColdFusion first began making Web

application developers productive

and helped them create dynamic Web

sites easily. A lot has happened in the

world and to application development,

end-user expectations, the pervasiveness

of technology in people’s lives, and to

the evolution of ColdFusion. However,

with everything that has changed in the

past decade, there are some fundamental

truths in the ColdFusion mission that we

have tried to ensure throughout that time

and with each release. Among those prin-

ciples is our belief that ColdFusion should:

• Make customers insanely productive in

building applications of all sizes

• Make cutting-edge application devel-

opment easy

• Make new types of solutions possible

• Make the lives of administrators and IT

groups easy

 The ColdFusion product went through

a bit of a metamorphosis with the 6.0 [the

ColdFusion MX] release several years ago.

With that release, ColdFusion moved onto

the Java platform and added support for

CFCs (ColdFusion components) and Web

services, among other features. Last year,

the ColdFusion MX 6.1 release nailed bugs

and stability issues, introduced dramatic

new performance and scalability gains

over 6.0., 5, and 4.5, and is a proven,

rock-solid foundation on which we can

engineer and innovate future versions of

ColdFusion.

 Earlier this year, we released an

updater for the 6.1 release, which includ-

ed hot-fix rollups and cleaned up some

final issues. We feel very good about the

current codebase, and we’re hearing the

same from customers as well.

 By the way, if you’re still on version 4

or version 5, you’re missing out on some

dramatic performance and scalability gains

(ColdFusion MX 6.1 is up to 23 times faster

than older versions). You can realize these

benefits by simply upgrading your server.

 Additionally, upgrading to ColdFusion

MX 6.1 is the easiest way to upgrade to

the ColdFusion Blackstone release. We’re

working hard to ensure that the upgrade

from ColdFusion MX 6.1 to ColdFusion

Blackstone is absolutely painless, and as

smooth and seamless as we can make it.

 The Blackstone release will support

upgrades from ColdFusion MX 6.0 and

ColdFusion 5. Upgrading should be seam-

less, but ColdFusion MX 6.1 customers

will have the smoothest transition. The

reason we’re so confident about this

is that ColdFusion Blackstone really is

the ColdFusion MX 6.1 Updater under

the hood, with many additional fixed

issues and all of the new and incredible

Blackstone features.

 On that note, we thought you would

like to hear from the lead Blackstone

engineers for each of the major new fea-

ture areas. We thought that in the spirit

of the openness and transparency we’ve

tried to maintain around this landmark

release, you might like to get inside the

minds of the people who have lived,

breathed, and labored for well over a year

and a half to make Blackstone.

 Over the next few months, ColdFusion

engineering team members will give you

the inside scoop so you can hear first-hand

accounts of the process of researching,

innovating, creating, refining, testing, and

polishing the new features. In some cases

you’ll hear about some of the internal

debates, the disappointments and setbacks,

the challenges and triumphs, and the major

breakthroughs that all played key roles in

“Making Blackstone.” Most important, you’ll

hear all about the new Blackstone features,

have a chance to try out some of the new

features with code samples, and learn what

the features mean for you.

 Blackstone delivers something for

everyone: application developers, appli-

cation users, system administrators, and

emerging developers who have a limited

amount of time to become productive in

building Web applications.

 We are extremely excited about the

new features in this release and think

that you will be too. We don’t think we’ve

ever witnessed a more passionate and

energized group of people working

together towards the common goal of

delivering for our customers than the

people on the ColdFusion team during

this release. In fact, the only other group

of people that comes to mind who might

be more passionate about what they’re

doing are ColdFusion customers them-

selves – your success is what drives us.

 Accordingly, let us take this opportu-

nity to say thank you. Thank you for your

support over this incredible past decade.

Thank you for your feedback and efforts

to make the product better, and thank

you for doing what you do.

 We know many of you are the unsung

heroes in your organizations, and we aim

to arm you and keep you armed with

innovative, productive, useful, scalable,

and efficient options in ColdFusion as you

solve problems, innovate new solutions,

streamline processes, build new busi-

nesses, train more kids, sell more products,

become more efficient, communicate

more effectively, and make the world a

better place in thousands of other ways.

Upcoming “Making
Blackstone” Article Series
 In the upcoming “Making Blackstone”

article series that we will publish over the

next few issues of MXDJ, you will have

the opportunity to learn about new or

updated features in Blackstone including:

• “Blackstone Reporting” by Dean

Harmon, Sherman Gong, Collin Tobin,

and Bill Sahlas

• “Blackstone Printable Output” by Xu

Chen and Hiroshi Okugawa

• “Blackstone Event Gateways” by Tom

Jordahl and Jim Schley

• “Rich Forms” by Mike Nimer and

Kumaran Nallore

• “Blackstone Searching and Web

Services” by Tom Jordahl and Jim Schley

• “Blackstone Clustering, Deployment, and

Multi-instance Support” by Geoff Greene,

Erik Tierney, Brent Baker, and Jim Murphy

Where to Go from Here
 If you haven’t purchased upgrades to

or copies of ColdFusion MX 6.1 Enterprise

with subscription, which includes entitle-

ment to two years of software upgrades,

check it out now – it’s a great and cost-

effective step.

cf

Introducing the “Making Blackstone” Article Series
Blackstone heralds a new dawn for Macromedia ColdFusion

by damon cooper & tim buntel

Damon Cooper is direc-

tor of engineering for

ColdFusion at Macromedia,

Inc. His team is currently

focused on building and

delivering the next major

version of ColdFusion,

code-named “Blackstone.”

His Web site is at

 www.dcooper.org.

Tim Buntel is ColdFusion

product manager for

Macromedia. His Web site

is at www.buntel.com.

i

1 • 2005 MXDJ.COM • 57

rankly, the decision was a tough one:

computer genius circa 1982 or tribute

to Roller Jam (go Mr. Mean!). While both

concepts felt right on for the Mindflood

(www.mindflood.com) portfolio site, Sinclair

Spectrum's Proclaimation, “our computers

can handle it” with a big thumbs up felt more

effective than a reenactment of the California

Quakes’ signature move – the Skyscraper. By

using our state-of-the-art supercomputer tech-

nology in conjunction with Macromedia Studio

Pro, we created a seamless blend of nostalgia,

innovation, and personality where visitors can

flip through our work or view our Flash Video

Web demo reel, both of which are kept up-to-

date with ColdFusion MX and our Synergy con-

tent management system.

Commanders
of Ingenuity

f to Roller Jam (go Mr. Mean!). While both

concepts felt right on for the Mindflood

can handle it” with a big thumbs up felt more

effective than a reenactment of the California

Quakes’ signature move – the Skyscraper. By

using our state-of-the-art supercomputer tech-

nology in conjunction with Macromedia Studio

Pro, we created a seamless blend of nostalgia,

innovation, and personality where visitors can

flip through our work or view our Flash Video

Web demo reel, both of which are kept up-to-

date with ColdFusion MX and our Synergy con-

Commanders Commanders

va
n

g
u

a
rd

1 • 200558 • MXDJ.COM

TRIM

BLEED

LIVE

T
R

IM

B
L

E
E

D

L
IV

E

Macromedia WPS Awareness Ad:

CFDJ Magazine

MXDJ Magazine

(full-page)

trim 8.375 x 10.75”

live 7.875 x 10.25”

bleed 8.625 x 11”

